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Abstract

Multimodal recommendation (MMRec) aims to integrate
multimodal information of items to address the inherent data
sparsity issue in collaborative-based recommendation. Tradi-
tional MMRec methods typically capture the structure-level
item representations from the observed user behaviors within
the multimodal graph, overlooking the potential impact of
negative instances for personalized preference understand-
ing. In light of the outstanding generative ability and step-by-
step inference characteristic of Diffusion Models (DMs), we
propose a Curriculum Conditioned Diffusion framework for
Multimodal Recommendation (CCDRec), which precisely
excavates the modality-aware distribution-level correlation
among multi-modalities and elegantly integrates the reverse
phase of DMs into negative sampling to highlight the most
suitable instances in a curricular manner. Specifically, CC-
DRec proposes the Diffusion-controlled Multimodal Align-
ing module (DMA) to align multimodal knowledge with
collaborative signals by capturing the fine-grained relation-
ships among multi-modalities in the probabilistic distribution
space. Furthermore, CCDRec designs the Negative-sensitive
Diffusive Inferring module (NDI) to progressively synthesize
the negative sample pool with diverse hardness to support
the following knowledge-aware negative sampling. To gradu-
ally ramp up the training complexity, CCDRec further intro-
duces a Curricular Negative Sampler (CNS) to tally the cur-
riculum learning paradigm with the reverse phase of DMA,
thereby adaptively sampling the gold-standard negative in-
stances to enhance optimization. Extensive experiments on
three datasets with four diverse backbones demonstrate the
effectiveness and robustness of our CCDRec. The visualiza-
tion analyses also clarify the underlying mechanism of our
DMA in multimodal representation alignment and CNS in
curricular negative discovery. The code and the correspond-
ing dataset will be uploaded in the Appendix.

Introduction
Multimodal recommendation is crucial in the information
society as it combines different data types (Ma et al. 2023a;
Wang et al. 2023b), including text, images, and audio, to
fully capture user preferences and deliver more personalized
and relevant recommendations.
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Figure 1: Illustration of the difference between the tradi-
tional MMR methods and CCDRec, which integrates the re-
verse process of DM with negative sampling to sample neg-
ative instances with diverse hardness adaptively.

Several research directions have emerged to incorporate
multimodal content into recommender systems. Inspired by
the success of graph neural networks (GNNs), several stud-
ies have frequently utilized GNNs to derive representations
from different views. For instance, these methods typically
generate modality preference representations under the user
preference view (Zhou, Zhou, and Shen 2023) and obtain
item representations within the multimodal view (Zhang
et al. 2021; Zhou and Shen 2023). Additionally, some re-
searchers leverage self-supervised multimodal signals (Yang
et al.) to ensure content coherence across diverse modali-
ties (Zhou et al. 2023; Tao et al. 2022). Recently, the ef-
fectiveness of generative models (Li et al. 2024; Sun et al.
2024) such as Variational Autoencoders and Diffusion Mod-
els (DM) have been explored in this specific recommenda-
tion task (Bai et al. 2023; Ma et al. 2024c). Existing al-
gorithms primarily leverage the observed user interactions
to improve the representation learning of items from multi-
modal knowledge and collaborative information. Neverthe-
less, these methodologies overlook the impact of negative
behaviors, thereby losing some necessary knowledge that ef-
fectively understands user preferences.

In recommender systems, negative sampling is critical for
capturing negative instances in a sparse user-item interaction
matrix to enhance model performance. Traditional strategies
typically define the fixed probabilities in recommendation
(e.g., uniform sampling (Guo et al. 2017) and popularity-
based sampling (Mikolov et al. 2013)), lacking flexibility in
capturing users’ dynamical preferences. To address this, re-
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cent studies have introduced a technique called hard negative
sampling (HNS). It dynamically selects more informative
negative instances, such as variance-based sampling func-
tions (Ding et al. 2020) and hop-mixing strategies (Huang
et al. 2021). In multimodal recommendation, existing nega-
tive sampling strategies typically apply methods proven ef-
fective in collaborative filtering to multimodal representa-
tions, lacking flexibility and adaptability. Benefiting from
its outstanding generative ability and step-by-step inference
characteristic, DM achieves notable success in image gener-
ation and speech synthesis. The multi-step Markov reverse
process of DM enables both flexible access at denoising
stages and adaptive difficulty control, facilitating step-wise
negative sampling. To achieve this, we must address the fol-
lowing two challenges: (1) How to leverage DM for inte-
grating multimodal information with collaborative knowl-
edge, learning more accurate item-aligned representations?
(2) How can we develop a negative sampling strategy tai-
lored for multimodal recommendation that seamlessly com-
bines the reverse process of DM with the negative sampling
process in a dynamic manner?

To tackle these challenges, we propose a Curricular
Conditioned Diffusion for Multimodal Recommendation
(CCDRec), which utilizes a multimodal conditional diffu-
sion model to align the multimodal representations with
the collaborative signals and guides the adaptive nega-
tive sampling process. Specifically, we first propose the
Diffusion-controlled Multimodal Aligning module (DMA),
which leverages the DM to capture fine-grained relation-
ships among modalities while aligning multimodal features
with collaborative features, generating accurate item-aligned
representations. Furthermore, we develop the Negative-
sensitive Diffusive Inferring (NDI), which constructs sam-
ple pools with diverse hardness by progressively synthesiz-
ing information-rich features. This allows for a flexible se-
lection of negative instances with varying difficulty levels.
To mitigate the challenges associated with over-challenging
negative samples early in training, we designed a Curricular
Negative Sampler (CNS) to dynamically model user prefer-
ences, allowing the model to train from simple to complex.

Extensive experiments on three real-world datasets show
that CCDRec achieves significant improvements across all
datasets. Additionally, we conducted ablation studies to ver-
ify the effectiveness of all components in CCDRec and per-
formed visualization analyses to elucidate the underlying
mechanisms of DMA in multimodal integration. The main
contributions of this paper are summarized as follows:
• We introduce a multimodal recommendation framework

CCDRec, which skillfully combines the reverse phase of
conditioned DMs into the negative sampling to pinpoint
the optimal instances. To our knowledge, we are the first to
explore negative sampling strategies for multimodal rec-
ommendations using diffusion models.

• We propose three model-agnostic modules, DMA, NDI,
and CNS, which can be integrated at different stages and
work well with multimodal recommendation systems.

• We conduct extensive experiments on three datasets with
two multimodal recommendation backbones to demon-
strate the effectiveness and universality of CCDRec.

Related Work
Multimodal Recommendation The goal of multimodal
recommendation is to enhance item representations by in-
corporating supplementary multimodal content alongside
historical interactions. Early studies (He and McAuley 2016;
Chen et al. 2019) used pre-extracted visual features to enrich
item representations. Based on the success of Graph Neural
Networks (GNN) in recommendation, some methods (Wang
et al. 2021; Zhang et al. 2021; Zhou and Shen 2023) in-
corporate it to extract user-specific modal preferences and
high-order relationships between items. Additionally, self-
supervised learning (SSL) techniques (Tao et al. 2022; Zhou
et al. 2023) have been introduced to improve latent item rep-
resentations. Recently, generative methods have also been
applied in multimodal recommendations (Bai et al. 2023;
Yu et al. 2023; Ma et al. 2024c). For instance, MCDRec (Ma
et al. 2024c) uses DM to model multimodal and collabora-
tive data in a continuous space. However, existing methods
have overlooked the modeling of negative behaviors.

Diffusion Models in Recommendation Motivated by the
uncertainty injection and data augmentation capabilities of
Diffusion Models (DM) in computer vision (Rombach et al.
2022; Zheng et al. 2024; Yu et al. 2024), some studies
have explored the effectiveness of DM in recommenda-
tion. For instance, DiffRec (Wang et al. 2023a) gradually
generates global yet personalized collaborative information
through a denoising process. PDRec (Ma et al. 2024a) intro-
duces an approach with three plug-in modules to fully uti-
lize diffusion-based preferences across items. Some meth-
ods (Li, Sun, and Li 2023; Yang et al. 2024) explore the
underlying distribution of item spaces using DM to enhance
insights into item dynamics guided by users’ sequential be-
haviors. MCDRec (Ma et al. 2024c) injects modality-aware
uncertainty into item representations to mitigate biases be-
tween multimodal and collaborative features.

Negative Sampling in Recommendation Recommenda-
tion systems commonly use Bayesian Personalized Rank-
ing (BPR) (Rendle et al. 2012) and static negative sampling
based on fixed probability distributions to optimize models
(Guo et al. 2017; Mikolov et al. 2013). However, uniformly
selected negative items may result in smaller gradients and
less contribution to convergence. To overcome this issue,
researchers proposed hard negative sampling (HNS) meth-
ods such as DNS (Zhang et al. 2013) to oversample high-
score negatives, obtaining more information. For instance,
SRNS (Ding et al. 2020) employs a variance-based function
to detect high-information negative samples, and MixGCF
(Huang et al. 2021) generates synthetic negative samples by
combining negatives from multiple layers. Nonetheless, the
primary reliance of the mentioned methods on collaborative
filtering and graph representation learning limits their suit-
ability for the multimodal recommender.

Methods
Task Formulation and Overall Framework
The goal of multimodal recommendation is to leverage the
additional multimodal information on items to obtain more
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Figure 2: The overall structure of CCDRec. DMA explicitly aligns multimodal knowledge with collaborative signals via DM
while NDI and CNS elegantly integrate the reverse phase of DM into negative sampling to highlight the most suitable instances.

precise item representations for recommendations. We de-
fine the embeddings eu and ei for user u ∈ U and item
i ∈ I, where U and I denote the set of users and items. For
each item, we have its visual feature evi and textual feature
eti as additional information.

We thoroughly introduce the proposed CCDRec, which
uses DM to enhance the multimodal fusion (Chen et al.
2023b; Wang et al. 2022) of items and applies diffusion-
generated knowledge for adaptive negative sampling, se-
lecting different negative samples at various stages. The
main architecture of CCDRec is shown in Figure.2. Specif-
ically, CCDRec introduces a Diffusion-controlled Multi-
modal Aligning module (DMA), which utilizes DM to cap-
ture the fine-grained correlations across different modalities
to generate the aligned item representations. Subsequently,
CCDRec introduces a Negative-sensitive Diffusive Infer-
ring module (NDI), which forms sample pools using item-
aligned features generated at various diffusion steps for neg-
ative sampling. To improve generalization and convergence,
CCDRec has designed a Curricular Negative Sampler (CNS)
that selects progressively harder negative samples through-
out training.

Base Multimodal Recommender
We utilize FREEDOM(Zhou and Shen 2023) as our
base multimodal recommender, constructing modality-
aware item-item graphs with raw features evi and eti and sim-
plifying them using KNN sparsification to form normalized
adjacency matrices. By merging these matrices, we create a
unified latent item-item graph S and apply graph convolu-
tions for feature aggregation and information propagation to
obtain ĥi. In the user-item graph Â, we carry out multiple
convolutional operations using the default settings of Light-
GCN to derive the ID embeddings of users and items, desig-
nated as h̃i and h̃u. In the end, the representations for users
and items are hu = h̃u and hi = ĥi + h̃i. Additionally, we

utilize Multilayer Perceptrons (MLPs) to project features of
each modality as hm

i = emi Wm + bm.

Diffusion-controlled Multimodal Aligning
Diffusion models (Po et al. 2024; Li et al. 2023; Hooge-
boom, Heek, and Salimans 2023) fundamentally transform
data progressively into noise, subsequently generating re-
constructed samples via a parameterized denoising trajec-
tory that mirrors the original data’s distribution (Wallace
et al. 2024; Prabhudesai et al. 2023; Giannone et al. 2023).
Motivated by this principle, we introduce the Diffusion-
controlled Multimodal Aligning (DMA) module, derived
from Denoising Diffusion Probabilistic Models (DDPM).
This module is designed to accurately capture the probabilis-
tic correlations between multiple modalities and align mul-
timodal information with collaborative signals. By generat-
ing aligned multimodal fused features, it aims to address the
inconsistencies between collaborative and multimodal infor-
mation while better-capturing users’ deeper preferences.

Learning Phase of DMA Given an item ID embedding
ei, we initially denote it as e0i . During the forward pro-
cess, we gradually introduce Gaussian noise into ei0, trans-
forming it into an uncertain distribution after t steps, where
t ∼ Uniform{1, 2, . . . , T}:

q
(
eti | e0i

)
= N

(
eti,

√
ᾱte

0
i , (1− αt) I

)
. (1)

Through reparameterization, we can obtain the item repre-
sentation eti =

√
ᾱte

0
i +

√
1− ᾱtϵ. The reverse process

is essential in DM to iteratively eliminate the noise intro-
duced during the forward phase. To generate the subsequent
denoised representation at each step t, the reverse process is
employed:

pθ
(
et−1
i | eti

)
= N

(
eti; fθ

(
eti, t,h

v
i ,h

t
i

)
,Σθ

(
eti, t

))
, (2)

where Σθ (e
t
i, t) = σ2

t I =
1−ᾱt−1

1−ᾱt
βtI denotes the variance.

Typically, traditional diffusion models achieve inference by
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predicting the noise at each step. However, in the recom-
mendation domain, it is common to train suitable estimators
directly to approximate ei0 for performing the reverse steps.
Here, the mean µθ (e

t
i, t,h

v
i ,h

t
i) can be calculated by:

µθ (e
t
i, t,h

v
i ,h

t
i) =

1√
αt

(
eti −

βt√
1−ᾱt

fθ (e
t
i, t,h

v
i ,h

t
i)
)
, (3)

where fθ(.) is the tailored conditional estimator.
The core of generative tasks is to optimize the under-

lying data generation distribution, typically done by op-
timizing the variational bound(VLB) of the negative log-
likelihood. To learn a high-quality conditional estimator, we
follow the DDPM (Ho, Jain, and Abbeel 2020) setup and
minimize the KL divergence between the two distributions
q
(
eti | e

t−1
i , ei0

)
and pθ

(
et−1
i | eti

)
:

Lvlb = DKL

(
q
(
eti | et−1

i , e0i
)
∥pθ

(
et−1
i | eti

))
. (4)

Then, we transform it into a simpler Mean-Squared Error
(MSE) loss function:

Ldm = Ee0
i ,e

t
i

[∥∥e0i − fθ
(
eti, t,h

v
i ,h

t
i

)∥∥2] . (5)

In this context, e0i signifies the initial item embedding, while
fθ is the conditional estimator, responsible for generating
the estimated item representation ẽ0i . Next, we merge the
higher-order item representation ĥi from the base recom-
mender with the item-aligned representation to form the
fused representation êfi = (1− µ) ĥi + µ · ẽ0i , where µ is
an adjustable parameter that controls the diffused weight.

Conditional Estimator Following (Li, Sun, and Li 2023;
Wang et al. 2024), we adopt the Transformer architecture
as the conditional estimator fθ(.) in the reverse process to
generate ẽ0i . We integrate various modal features, including
noised item representation eti, textual feature ht

i, visual fea-
ture hv

i , and alongside a sinusoidal time step embedding ti to
form the input feature matrix F ∈ RB×M×d, where B is the
batch size, M is the number of modalities, and d is the fea-
ture dimension. The self-attention mechanism selectively fo-
cuses on different parts of the input data, allowing the model
to capture complex dependencies and relationships between
the various modalities. The aggregated attention output ẽ0i
is obtained by averaging across modalities, which ensures
the sophisticated incorporation of multimodal data precisely
condition the estimation of ê0i .

Inference Phase of DMA After each training epoch, the
inference phase of the diffusion model is executed. First,
similar to the training operations, given a complete diffusion
step t = T , we add noise to the item embedding e0i to obtain
êti. After that, we perform a step-by-step reverse denoising
operation êTi → êT−1

i → · · · → ê0i to achieve the final
ê0i . Through this process, we can generate an item-aligned
representation that conforms to the collaborative representa-
tion distribution. Aligned with the training task, we generate
êfi = (1− µ) ĥi + µ · ê0i as the item-fused representation.

Negative-sensitive Diffusive Inferring
Hard negative instances (Liu et al. 2023; Li et al. 2021)
typically refer to items highly relevant to a user’s interests,

providing rich information that enhances the model’s abil-
ity to discern and adapt to user interest preferences(Chen
et al. 2023a). However, existing research (Ma et al. 2023b;
Qi et al. 2022) has shown that optimizing with the hardest
negatives in the early stages can lead to local minima, re-
sulting in sub-optimal performance. Therefore, synthesizing
negative sample pools with varying difficulty levels to devise
appropriate negative sampling strategies poses a challenge.
To address this, we propose the Negative-sensitive Diffusive
Inferring module (NDI). Integrated with the DMI inference
process, NDI leverages features from different steps to cre-
ate a knowledge-aware negative sample pool, allowing the
selection of negatives with varying difficulty.

As described in the previous section, we update DM
during training to incorporate multimodal information into
the item collaborate feature. Subsequently, the trained DM
incrementally generates fused item representations across
multiple steps, enabling natural access at different stages.
Notably, this process is executed once at the start of each
epoch, ensuring minimal computational cost. Specifically,
the reverse process starts from noise and gradually generates
the final representation over T steps. These samples progres-
sively approach the item-fused representations with the rich-
est information. To this end, we establish a fixed step inter-
val and extract item representations after T/4, T/2, 3T/4,
and T steps. These extracted representations form the four
sample candidate pools, which can be expressed as:

Êt
|I| =

[
êt0, ê

t
1, · · · , êt|I|

]
∈ R|I|×d, t ∈

{
3T
4 , T

2 ,
T
4 , 0

}
. (6)

Then, we can flexibly use different sample pools to identify
indices of negative instances with varying difficulty levels.

Curricular Negative Sampler
Including all difficult negative samples (Ma et al. 2024b)
early in training can hinder model performance and slow
convergence. To address this, we use Curriculum Learning
(CL) (Chen et al. 2021) to gradually increase sample dif-
ficulty, improving generalization and speeding up conver-
gence. Therefore, we developed an adaptive Curricular Neg-
ative Sampler (CNS) to enhance the learning process of mul-
timodal recommendion. During training, we progressively
introduce harder negative samples at different stages, warm-
ing up the model and mitigating the impact of difficult neg-
atives. At a specified training epoch n, the sample pool Êt

|I|
utilized is determinable by the formula:

t = (T/4)× (3−min (3, ⌊n/∆τ⌋)) . (7)

Here, ∆τ controls the interval between epochs in CL, and
τend marks the ending of the CL strategy within the training
process. After epoch n > τend , we use the final item repre-
sentations as the sample pool for negative sampling, consid-
ered the hardest samples.

Once the sample pools are selected, we randomly sample
10% of the items as candidates. As mentioned in Section
3.3, the final item representations are denoted as H|I| =[
h0,h1, · · · ,h|I|

]
∈ RI×d. Given a positive item hp, we

retrieve its representation êtp at the specific diffusion step
from the sample pool and compute the similarity with all
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Dataset #Users #Items #Interactions Sparsity
Baby 19,445 7,050 160,792 99.88%
Sports 35,598 18,357 296,337 99.95%

Clothing 39,387 23,033 237,488 99.97%

Table 1: Statistics of three real-world multimodal datasets.

candidate items. An item is randomly sampled from the top
k candidates with the highest similarity scores. Formally, let
S
(
êtp, ê

t
j

)
denote the similarity score between the positive

item representation êtp and the candidate items at step t. The
top k candidates Ck are selected based on the highest similar-
ity scores, where k represents the proportion of the top-rated
items. Next, we resample an item êtc where c ∈ Ck, desig-
nating c as the curricular negative item index. Once the item
index c is selected, it is mapped back to its final representa-
tion hc as the final negative instance. To enhance the model’s
generalization capability and stability, we consider the inclu-
sion of easy negative instances during the training process is
necessary. Therefore, we incorporate randomly selected hr

and the chosen negative sample hc for joint training.

Optimization Objectives
Building on the methodology of traditional recommendation
algorithms, we implement the Bayesian personalized rank-
ing (BPR) loss (Rendle et al. 2012) for each user u and pos-
itive item hp. To incorporate two types of negative samples
hr and hc, we introduce two separate loss functions, which
can be written as follows:

Lr
bpr =

∑
(u,p,r)∈R

(
− log σ

(
h⊤
u hp − h⊤

u hr

))
,

Lc
bpr =

∑
(u,p,c)∈R

(
− log σ

(
h⊤
u hp − h⊤

u hc

))
.

(8)

The overall objective function L can be formulated as:
L = (1− ω) · Lr

bpr + ω · Lc
bpr + λ · Ldm, (9)

where λ and ω denote the weight of different losses.

Experiments
In this section, we conduct comprehensive experiments to
answer the following research questions:
• RQ1: How does CCDRec perform against the CF meth-

ods and the SOTA multimodal recommendation methods?
• RQ2: How do different components in our CCDRec im-

pact its recommendation performance?
• RQ3: Is CCDRec still effective with diverse multimodal

recommendation backbones?
• RQ4: Does CCDRec still maintain its superiority com-

pared to other negative sampling algorithms?
• RQ5: How does DMA affect the distribution of user rep-

resentation and item representations?
• RQ6: What is the underlying mechanism of CNS in cur-

ricular negative discovery?

Experimental Settings
Datasets Following previous works (Zhou 2023), we per-
form experiments on the Baby, Sports, and Clothing

datasets from the Amazon platform. We pre-process the data
with a 5-core setting on items and users, as used in (He and
McAuley 2016), and present the results in Table 1. Visual
features are directly used as pre-extracted with a dimension
of 4096 (Zhou and Shen 2023), while textual features are ob-
tained using sentence-transformers (Reimers and Gurevych
2019) with 384-dimensional embeddings.

Baselines To demonstrate the effectiveness of our method,
we compare it with the following baseline models. First,
we select two general CF-based recommenders BPR (Ren-
dle et al. 2012) and LightGCN (He et al. 2020). Addition-
ally, we further compare it with seven multimodal recom-
menders: MMGCN (Wei et al. 2019), SLMRec (Tao et al.
2022), LATTICE (Zhang et al. 2021), BM3 (Zhou et al.
2023), FREEDOM (Zhou and Shen 2023), MG (Zhong
et al. 2024) and MCDRec (Ma et al. 2024c).

Parameter Settings Following the classical works (Zhang
et al. 2021; Zhou et al. 2023; Zhou and Shen 2023), we set
the embedding size of both users and items to 64 for all mod-
els. To ensure a fair comparison, we present the results of
other methods using two random negative samples. We per-
form a comprehensive grid search to select the optimal uni-
versal hyper-parameters. To be specific, the number of GCN
layers is set to 2. We set the loss weight λ at {0.5, 1, 2}
and ω at {0.5, 0.7, 0.8, 0.9}. As for the diffusion process,
the step t is tuned in {5, 10, 20, 40, 100}. Respectively, the
diffused weight µ is chosen from {0.3, 0.5, 0.8}. ∆τ is
searched in the set {3, 5, 10, 15, 20}, and τend is searched
in {30, 50, 75, 100}. Following (Zhou and Shen 2023), we
opt for the early stopping strategy.

Performance Comparison (RQ1)
We conduct experiments on three real-world datasets with
two standard evaluation metrics: NDCG@k (N@k) and Re-
call@k (R@k), where k is in 5, 10. We accentuate the best
results of the same backbone with bold font. As shown in
Table 2, we can observe the following insights:

(1) CCDRec significantly outperforms all baselines across
all metrics in three datasets. This indirectly demonstrates
that the combination of multimodal diffusion-enhanced
item fusion and diffusion knowledge-guided negative sam-
pling strategies can effectively leverage multimodal infor-
mation, enabling the model to learn users’ fine-grained mul-
timodal preferences. Additionally, multimodal recommen-
dation methods generally outperform traditional CF-based
recommendations, and CCDRec achieves further improve-
ments over state-of-the-art multimodal recommenders. This
further demonstrates the superiority of incorporating multi-
modal information in recommendation systems.

(2) Comparing the performance of CCDRec on various
base models, we observe that CCDRec delivers the most no-
table improvement on LATTICE and achieves peak results
across all datasets when combined with FREEDOM. Signif-
icant improvements are achieved on LATTICE, FREEDOM,
and MG (without any multimodal diffusion strategy), which
further underscores the ability of CCDRec to model item
multimodal fusion representations with the tailored DMs.
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Versions Algorithms
Baby Sports Clothing

R@5 R@10 N@5 N@10 R@5 R@10 N@5 N@10 R@5 R@10 N@5 N@10
CF-based

recommenders
BPR-MF 0.0208 0.0344 0.0138 0.0183 0.0257 0.0410 0.0177 0.0228 0.0118 0.0191 0.0079 0.0102

LightGCN 0.0307 0.0488 0.0204 0.0263 0.0354 0.0554 0.0242 0.0308 0.0219 0.0355 0.0145 0.0189

Multimodal
recommenders

MMGCN 0.0251 0.0410 0.0164 0.0217 0.0236 0.0388 0.0154 0.0204 0.0128 0.0210 0.0085 0.0111
SLMRec 0.0320 0.0486 0.0216 0.0271 0.0420 0.0650 0.0285 0.0361 0.0290 0.0440 0.0192 0.0240

BM3 0.0326 0.0535 0.0219 0.0288 0.0401 0.0627 0.0269 0.0343 0.0273 0.0417 0.0180 0.0226
LATTICE 0.0352 0.0545 0.0228 0.0291 0.0395 0.0625 0.0263 0.0338 0.0330 0.0499 0.0217 0.0272

CCDRec(LATTICE) 0.0371 0.0596 0.0251 0.0325 0.0470 0.0715 0.0316 0.0397 0.0393 0.0613 0.0259 0.0330
Improvement 5.40% 9.36% 10.09% 11.68% 18.99% 14.40% 20.15% 17.46% 19.09% 22.85% 19.35% 21.32%
FREEDOM 0.0389 0.0626 0.0250 0.0328 0.0455 0.0713 0.0299 0.0384 0.0403 0.0623 0.0265 0.0337

CCDRec(FREEDOM) 0.0426 0.0679 0.0274 0.0356 0.0481 0.0760 0.0315 0.0406 0.0433 0.0677 0.0288 0.0368
Improvement 9.51% 8.47% 9.60% 8.54% 5.71% 6.59% 5.35% 5.73% 7.44% 8.67% 8.68% 9.20%

MCDRec 0.0381 0.0651 0.0255 0.0343 0.0463 0.0709 0.0305 0.0386 0.0415 0.0653 0.0276 0.0353
CCDRec(MCDRec) 0.0409 0.0667 0.0269 0.0354 0.0478 0.0740 0.0315 0.0400 0.0434 0.0670 0.0288 0.0364

Improvement 7.35% 2.46% 5.49% 3.21% 3.24% 4.37% 3.28% 3.63% 4.58% 2.60% 4.35% 3.12%
MG 0.0390 0.0624 0.0253 0.0330 0.0460 0.0714 0.0302 0.0385 0.0400 0.0622 0.0264 0.0336

CCDRec(MG) 0.0399 0.0651 0.0262 0.0344 0.0489 0.0746 0.0319 0.0404 0.0428 0.0664 0.0284 0.0361
Improvement 2.31% 4.33% 3.56% 4.24% 6.30% 4.48% 5.63% 4.94% 7.00% 6.75% 7.58% 7.44%

Table 2: Performance comparison on three datasets. Improvement stands for the relative improvement over its backbone.

LATTICE
LATTICE + DMA

LATTICE + DMA + NDI MG
MG + DMA

MG + DMA + NDI
CCDRec (MG)

FREEDOM
FREEDOM + DMA

FREEDOM + DMA + NDI
CCDRec (FREEDOM)CCDRec (LATTICE)
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Figure 3: Results on ablation study of CCDRec on LATTICE, FREEDOM and MG. All components are effective.

(3) Moreover, our CCDRec shows consistent improve-
ments on MCDRec which incorporates diffusion-guided
item modeling, suggesting the limitations of U-Net for item
feature reconstruction in MCDRec, like the loss of cru-
cial modal information. Additionally, this result indicates
that CCDRec offers valuable guidance for model training
through diffusion-guided negative sampling strategies.

Ablation Study (RQ2 & RQ3)
We conduct ablation studies to examine the efficacy of dif-
ferent components in CCDRec. Specifically, we compare
CCDRec with its ablation versions to verify the effective-
ness of DMA, NDI, and CNS respectively. Here, “FREE-
DOM+DMA+NDI” refers to randomly selecting samples
from the last sample pool Ê0

|I| in NDI as the negative in-
stances for model optimization. Notably, CCDRec (FREE-
DOM) is equivalent to FREEDOM+DMA+NDI+CNS. As
shown in Figure 3, we observe that:

(1) FREEDOM+DMA consistently outperforms FREE-
DOM across two datasets, demonstrating that DMA better
captures users’ fine-grained modal preferences and gener-
ates more accurate item-aligned representations.

(2) FREEDOM+DMA+NDI exhibits significant improve-
ment over FREEDOM+DMA, indicating that the NDI mod-
ule effectively uncovers latent negatives using item-aligned
representations. CCDRec (FREEDOM) further boosts its
performance, underscoring the value of a curriculum-based
dynamic negative sampling strategy that adapts difficulty
based on inference steps for optimal training.

(3) We also perform a series of progressive ablation exper-
iments on different variants of various base models, consis-
tently finding that CCDRec outperforms all other variants.
This indicates that the different components we propose are
effective and generalizable across various multimodal rec-
ommendation models.

Performance against Other Hard Negative
Sampling Methods (RQ4)
To further verify the performance of CCDRec, we compared
it with three hard negative sampling methods: DNS (Zhang
et al. 2013), MixGCF (Huang et al. 2021), and RealHNS
(Ma et al. 2023b). To ensure a fair comparison, we integrate
them into three base models and conduct a comprehensive
evaluation under consistent experimental settings. The re-
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Versions Baby Clothing
Recall@10 NDCG@10 Recall@10 NDCG@10

LATTICE 0.0545 0.0291 0.0499 0.0272
+DNS 0.0572 0.0311 0.0580 0.0322

+MixGCF 0.0582 0.0316 0.0582 0.0321
+RealHNS 0.0586 0.0313 0.0586 0.0322
+CCDRec 0.0596 0.0356 0.0613 0.0330

FREEDOM 0.0626 0.0328 0.0623 0.0337
+DNS 0.0637 0.0339 0.0650 0.0354

+MixGCF 0.0654 0.0348 0.0644 0.0350
+RealHNS 0.0659 0.0351 0.0641 0.0351
+CCDRec 0.0679 0.0356 0.0677 0.0368

MG 0.0624 0.0330 0.0622 0.0336
+DNS 0.0635 0.0336 0.0639 0.0346

+MixGCF 0.0643 0.0342 0.0648 0.0349
+RealHNS 0.0644 0.0338 0.0651 0.0352
+CCDRec 0.0651 0.0344 0.0664 0.0361

Table 3: Comparative results of CCDRec with other hard
negative sampling methods on two datasets.

(a) Initial State (b) Convergency
User embedding Item embedding Item-fused embedding
Hidden visual representation Hidden textual representation
Item high-order embedding Item aligned embedding

Figure 4: Visualization of the multimodal representation dis-
tribution of CCDRec on different training stages from the
perspective of different users.

sults are shown in Table 3, where we can observe that: (1)
CCDRec consistently outperforms other negative sampling
methods across different base models (LATTICE, FREE-
DOM and MG) on two datasets, which further illustrates the
superiority of our method in negative sampling. (2) Using
different HNS methods with various backbones consistently
improves performance. This substantiates the significant la-
tent potential of negative information in the multimodal rec-
ommendation, showing that the judicious selection of neg-
ative sampling strategies can enhance the model’s ability to
model users’ multimodal preferences consistently.

In-depth Analyses of CCDRec
In this section, we employ t-SNE (Van der Maaten and Hin-
ton 2008) to visualize how the proposed DMA impacts the
distribution of multimodal item representations as shown in
Fig. 4, and also clarify the underlying mechanism of the pro-
posed CNS in negative selection in Fig.5.

Estimation of Multimodal Alignment in DMA (RQ5)
First, we randomly select five users to extract their embed-

Figure 5: Visualization of the representation distribution of
negative instances with diverse hardness (from step 3T/4 to
step 0 of the inference phase of DMA) in training.

ding and multimodal item representations of their interacted
items on Baby at the initial state and the convergence state.
The same color represents representations belonging to the
same user. We find that at the initial stage, the related repre-
sentations of the same user are scattered in the whole low-
dimensional space. In contrast, these representations of the
same user exhibit significant clustering distributions in the
convergence stage, with the item-fused representation being
the closest to the user. This may be attributed to the effec-
tiveness of DMA in precisely capturing the fine-grained re-
lationships among multi-modalities of the same item.

Estimation of Negative Inference in CNS (RQ6) To in-
vestigate the effectiveness of sampled negative instances in
CNS, we randomly select two users with the positive sam-
ples they have interacted with and select the negative in-
stances with diverse hardness which are sampled in CNS.
From Fig. 5, we can observe that: Obviously, the hardness
of the sampled negative instances increases with the in-
ference phase of DMA, specifically demonstrated by these
samples progressively moving closer to the representation
of the corresponding user and positive samples in the low-
dimensional space. That is, fewer reverse steps (e.g., 3T/4,
T/2) result in noisier and simpler negative samples, whereas
more steps sample more informative negative instances. This
phenomenon highlights the effectiveness of our proposed
CNS in boosting recommender optimization.

Conclusion
In this paper, we proposed a novel Curricular Condi-
tioned Diffusion for Multimodal Recommendation (CC-
DRec) framework, which ingeniously integrates the reverse
process of DM with the negative sampling process to select
suitable negative instances. Initially, we propose the DMA to
capture fine-grained relationships between multimodal fea-
tures of items and aligning them with collaborative signals.
Then, CCDRec introduces the NDI and CNS dynamically
select negative samples of varying difficulty during training.
The extensive evaluation on three real-world datasets and
four base models verify the effectiveness of CCDRec. In the
future, we will continue to explore the untapped potential of
DM in negative sampling and investigate the effectiveness in
other more challenging scenarios(Qi et al. 2024b,a), such as
multimodal cross-domain or sequential recommendation.
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